Liz Florez¹

Saadiah Arshed¹, Reiny Scheper², Matt Templeton¹, Joanna Bowen¹. Liz.Florez@plantandfood.co.nz

CRISPR-Cas9 gene editing to characterise virulence genes on Neonectria ditissima, a necrotrophic fungal pathogen of apple.

Plant & Food Research Limited, Auckland, New Zealand 2. Plant & Food Research Limited, Havelock North, New Zealand

plantandfood co.nz The New Zealand Institute for Plant and Food Research Limite

Introduction

European canker, caused by the necrotroph pathogen Neonectria ditissima, is one of the most damaging apple diseases worldwide^{1,2,3}. Its molecular virulence mechanisms are yet to be understood. Several candidate virulence genes (one putative protein kinase and three candidate effectors) were selected from a comparative genomics and transcriptomic analysis to be further analysed^{4,5}. Homologous recombination (HR) and CRISPR-Cas9 (CC9) gene editing methodologies were used to silence these genes and assess their virulence role in apple fruit and twigs.

Methods

- Protoplast-mediated transformation (PMT) was used to transform N. ditissima.
- Both HR and CRISPR-Cas9 required KO vectors with the hygromycin B resistance marker and ~600-800bp flanks of the gene of interest, for HR, or the Cas9 enzyme and gene-specific guide RNA, for CC9.
- Confirmation of KOs was done through end-point PCR for the HR candidates and a high-resolution melting (HRM) curve analysis for the CC9 ones.
- The virulence of the KO mutants was assessed in apple fruit and twigs by measuring disease incidence, lesion length and symptomatology.

Results

1. CRISPR-Cas9 exhibited a higher transformation efficiency (94%) compared to HR (0.6%).

Table 1. Transformation and mutation efficiencies: Homologous recombination vs. CRISPR-Cas9

	Homologous recombination	CRISPR-Cas9
Number of colonies (NC)	1085	1480
NC with Hygromycin resistance	155	302
NC with Hyg resistance and KO mutation	1	284

2. CRISPR_Cas9 gene-edited mutants confirmed through HRM (Figure 1).

Figure 1. Screening of CRISPR-Cas9 transformants of Neonectria ditissima using qPCR-HRM analysis. Melting curves of g8150 amplicons between N. ditissima wild type and transformants. Melting curves were generated by Eco Software v5.0 - Illumina. The experiment is based on four technical replicates per sample.

RS324p RS305p WT RS324p WT Δα8150

Figure 2. Reduce virulence when knocking out g8150. Apple fruit and twigs infected with low-virulence isolate (RS305p), high-virulence isolate (RS324p) and *Aq8150* RS324p mutant.

Conclusions

- q8150 protein kinase has a potential role in *N. ditissima* virulence in apple.
- CRISPR-Cas9 and HRM were successfully applied for the first time in *N. ditissima* facilitating further studies to understand the life cycle and virulence of this fungus.

3. The single KO generated through HR (*Aa8150*) reduced disease incidence and symptomatology in apple twigs and produce smaller lesions in apple fruit compared to RS324p wild-type (WT, Figure 2 and 3).

Temperature (°C)

Wild hope (wh) Md RS32

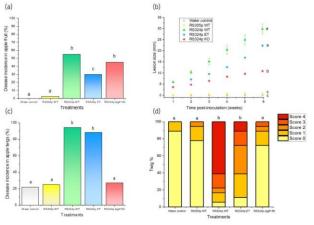


Figure 3. Disease expression and symptomtology of $\Delta g8150$ in apple fruit and twigs. (a) Disease incidence and (b) lesion size in apple fruit 6 weeks post inoculation with Neonectria ditissima isolates and water control, WT; wild type, ET; ectopic transformant. Ag8150. g8150 knockout. Error bars represent standard error of the mean (SEM) among biological replicates. Letters represent significant differences (p<0.01).

Acknowledgements: This work was funded by The New Zealand Institute Plant and Food Research Limited. Growing Futures Fund, Ambient Supply Chain programme.

References: 1. Campos, J. D. S., et al (2017). Clência Rural, 47. 2. Weber, R. W., & Barve, J. (2021). CABI Agriculture and Boscience, 2(1), 1-16. 3. Scheger, R. W., et al (2019). New Zealand Flant Protection, 72, 123-134. 4. Deng, C.H., et al (2015) Genome Announcements 3, e01348-01315. 5. MiCroexi et al (2019). Unpublished data

